Screening Dyslexia for English Using HCI Measures and Machine Learning

Luz Rello, Enrique Romero, Maria Rauschenberger, Abdullah Ali, Kristin Williams, Jeffrey P. Bigham, Nancy Cushen White
Dyslexia

not related to intelligence

10% of the population

– Frequent

– Universal

– School failure

[Shaywitz, 2008]
40% of school dropout rate

Why is it so difficult to detect?
Why is Dytective Different?

- Content Design
 - The empirical linguistic analyses of the errors that people with dyslexia make is the source of knowledge to design the exercises

- Predictive Model
 - Using Machine learning
Content Design
(17 dyslexia indicators)

<table>
<thead>
<tr>
<th>Language Skills</th>
<th>Working Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alphabetic Awareness</td>
<td>Visual (alphabetical)</td>
</tr>
<tr>
<td>Phonological Awareness</td>
<td>Auditory (phonology)</td>
</tr>
<tr>
<td>Syllabic Awareness</td>
<td>Sequential (auditory)</td>
</tr>
<tr>
<td>Lexical Awareness</td>
<td>Sequential (visual)</td>
</tr>
<tr>
<td>Morphological Awareness</td>
<td>Executive Functions</td>
</tr>
<tr>
<td>Syntactic Awareness</td>
<td>Activation and Attention</td>
</tr>
<tr>
<td>Semantic Awareness</td>
<td>Sustained Attention</td>
</tr>
<tr>
<td>Orthographic Awareness</td>
<td>Simultaneous Attention</td>
</tr>
</tbody>
</table>

Perceptual Processes
- Visual Discrimination and Categorization
- Auditory Discrimination and Categorization
Content Design
Demo!

http://eng.dyctective.com/play.php
Participants

- 267 participants from one specialised center, three schools, and from dyslexia associations.
- Age ranged from 7 to 60 years old.
- We classified these participants into three groups:
 - 52 were diagnosed with dyslexia / Class D (dyslexia) (28 female, 24 male, M = 11.16, SD = 6.31)
 - 206 do not have dyslexia / control group / Class N (Not-Dyslexia) (94 female, 112 male, M = 11.89, SD = 5.11).
 - 9 participants at risk of having dyslexia or suspected of having dyslexia - Class M (Maybe) (4 female, 5 male, M = 17.66, SD = 16.17)

- The first language of all participants was English, although 84 participants spoke another language (mostly Spanish in the Texas area)
Dataset

- Age
- Gender
- Second mother language (bilingualism)
- Spanish subject.
- Performance measures.

226 features per participant

Clicks
Hits
Misses
Score
Accuracy
Missrate
ML Approach

- Support Vector Machine (SVM)
- 10-fold cross validation experiment (normally recommended for smaller datasets when a single train-development test split might not be informative enough)
- We randomised the data and used stratified sampling to ensure a similar distribution of classes in all folds.
- We analysed the data for features whose distributions were different between dyslexic and non-dyslexic participants. To that end, a Kolmogorov-Smirnov test was performed. The number of Hits and Misses showed different distributions for a number of exercises.
Results

<table>
<thead>
<tr>
<th></th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>84.62%</td>
</tr>
<tr>
<td>Precision – Class D (Dyslexia)</td>
<td>63.76%</td>
</tr>
<tr>
<td>Recall – Class D (Dyslexia)</td>
<td>80.24%</td>
</tr>
<tr>
<td>Precision – Class N (Not-Dyslexia)</td>
<td>93.88%</td>
</tr>
<tr>
<td>Recall – Class N (Not-Dyslexia)</td>
<td>85.83%</td>
</tr>
</tbody>
</table>
Discussion

– Most informative features were a set of 10 features composed of *Hits* and *Misses*, *Misses* being the most informative ones at the individual level.

– These features are performance measures belonging to exercises that target **Alphabetic Awareness, Phonological Awareness, Visual Discrimination and Categorization** and **Auditory Discrimination and Categorization**.

– These features come from exercises where the participant was required **to map (or associate) a letter name or a letter sound with a grapheme (letter or letters)**. This is consistent with previous literature on dyslexia that focus on the deficit on the phonological component in dyslexia.
Future Work

- **Pre-readers**
 - Starting from 3 to 6 years old

- **Large scale study**
 - With ~5000 participants

- **Better predictive model**
 - With recurrent neural networks

- **Language Independent**
 - Musical and visual elements

- **Integration in commercial tool**
 (free screener for dyslexia)
Future Work

Fill the map of dyslexia with English speaking countries.
So far, 130,000 users in 54 countries (Spanish)
Conclusions

– A game uses linguistic and attentional exercises to find differences between people with and without dyslexia.
– A machine learning model able to predict dyslexia with almost 85% accuracy for English.
– Easy to scale, achieved earlier detection of dyslexia and prevents school failure.
Thank you :)